Learn about the non-invasive Elastography Test for tissue assessment. Valuable for liver, breast, and more. Discover its many uses and benefits.

By Joshua Napilay on Apr 08, 2024.

Fact Checked by Ericka Pingol.

Use Template

What is an Elastography Test?

Elastography is a medical imaging technique used to assess the elasticity or stiffness of tissues within the human body. It is valuable in the diagnosis and monitoring of various medical conditions, most notably in the field of radiology and ultrasound imaging. The primary objective of elastography is to provide additional information about tissue characteristics that cannot be obtained through traditional imaging methods like X-rays or standard ultrasound.

There are two main types of elastography:

  • Strain Elastography: This technique measures the deformation or strain of tissues when subjected to an external force. By comparing the tissue's initial shape with its deformed state, clinicians can assess the tissue's stiffness. Strain elastography is often used in breast imaging to detect breast tumors. Softer tissues, like cysts, deform more easily than stiffer tissues, such as tumors.
  • Shear Wave Elastography: This method generates shear waves within the tissue and measures their propagation speed. Stiffer tissues transmit these waves faster than softer ones. Shear wave elastography provides quantitative data about tissue stiffness and is commonly used for assessing liver fibrosis, as liver stiffness is a crucial indicator of liver health.

Elastography has a wide range of applications across various medical specialties, including assessing the stiffness of the prostate, detecting thyroid nodules, and evaluating musculoskeletal disorders. It has become an essential tool for non-invasive diagnosis and monitoring of conditions that affect tissue elasticity.

Printable Elastography Test

Download this Elastography Test for tissue assessment.

How Does it Work?

Elastography assesses the mechanical properties of tissues within the body, particularly their elasticity or stiffness. Here's a concise overview of how it operates:

Mechanical Waves

Elastography involves applying mechanical waves to the tissue of interest. These waves can be generated externally, such as through manual compression or a vibrating probe, or internally, using acoustic radiation force.

Deformation Measurement

As the mechanical waves interact with the tissue, they cause deformation or displacement within the tissue. This deformation can be observed using various imaging modalities, like ultrasound or MRI.

Image Acquisition

Specialized imaging equipment, such as an elastography ultrasound machine or MRI scanner, captures tissue images deformed.

Comparison with Baseline

The deformed tissue images are then compared to baseline or pre-deformation images. This comparison helps to quantify how much the tissue has deformed and in what direction.

Color-Coded Maps

The resulting data is often represented as color-coded maps, where softer tissues appear in one color (e.g., blue) and stiffer tissues in another (e.g., red). The color intensity indicates the degree of tissue stiffness.

Quantitative Assessment

The shear wave elastography measures the speed of shear waves generated within the tissue. Stiffer tissues transmit shear waves faster; this data is used for quantitative assessment of tissue stiffness.

Clinical Interpretation

A trained healthcare provider interprets the elastography images and quantitative data. They assess the tissue's stiffness and use this information to diagnose or monitor various medical conditions.

Elastography Test Example (sample)

An example of an elastography test report typically includes detailed imaging data and findings. These reports are usually not provided in PDF format directly to patients but are shared with referring physicians for clinical evaluation. However, a patient may request a copy of their medical report from their healthcare provider.

The elastography test report will include images displaying color-coded maps of tissue stiffness, indicating areas of varying elasticity, such as soft (blue) and stiff (red) regions. Quantitative data, often expressed in units like kilopascals (kPa), may also be included, providing numerical values for tissue stiffness. 

The report will describe the location and characteristics of any abnormalities detected, helping physicians make informed diagnoses and treatment decisions. Patients can request access to their medical records, including elastography reports, through their healthcare providers or institutions in PDF or paper format for their records or further consultation with other healthcare professionals.

Download this Elastography Test Example: 

When Would you use this Test?

Elastography tests find widespread use across various medical specialties and are valuable in several clinical scenarios. Here are some key situations when healthcare practitioners might employ elastography tests:

  • Liver Disease Assessment: Gastroenterologists and hepatologists frequently use elastography to evaluate liver health. Liver stiffness measurement helps assess the degree of liver fibrosis, aiding in diagnosing and staging liver diseases such as hepatitis and cirrhosis. It reduces the need for invasive liver biopsies, making it a safer and more convenient option for patients.
  • Breast Cancer Detection: Radiologists and oncologists utilize elastography, particularly strain elastography, to complement mammography and ultrasound in breast cancer screening. It assists in distinguishing between benign and malignant breast lesions by assessing their stiffness. This aids in early cancer detection and reduces unnecessary biopsies.
  • Thyroid Nodule Evaluation: Endocrinologists and thyroid specialists may use elastography to assess thyroid nodules. It helps differentiate between benign and malignant nodules, guiding treatment decisions and reducing unnecessary surgical interventions.
  • Prostate Health: Urologists often employ elastography to assess the prostate gland. It assists in identifying suspicious areas within the prostate, which can aid in the early detection of prostate cancer.
  • Musculoskeletal Disorders: Rheumatologists and orthopedic specialists use elastography to assess musculoskeletal conditions. It helps identify areas of inflammation, tissue damage, or joint abnormalities, aiding in diagnosing and managing conditions like arthritis and tendonitis.
  • Cardiovascular Applications: Cardiologists may use elastography to assess arterial stiffness, providing insights into a patient's cardiovascular health. It helps in evaluating the risk of hypertension and other cardiovascular diseases.�?�
  • Gynecological Assessments: Gynecologists might use elastography to evaluate pelvic organs, such as the cervix and uterus. It can assist in detecting abnormalities, including cervical cancer or uterine fibroids.

What do the Results Mean?

Interpreting elastography test results requires a thorough understanding of the specific medical condition being assessed and the context of the examination. However, here are some common results and their interpretations:

Soft or Low Stiffness (Blue Areas): Soft or low stiffness areas in elastography images typically indicate healthy or normal tissue. For instance:

  • In breast elastography, predominantly blue regions suggest that a breast lesion is likely benign, reducing the need for a biopsy.
  • In liver elastography, lower stiffness values (measured in kPa) may indicate minimal or no fibrosis, which is favorable for liver health.

Stiff or High Stiffness (Red Areas): Stiff or high stiffness areas often raise concern and may suggest pathology:

  • In breast elastography, red areas may indicate increased tissue stiffness associated with malignant breast tumors, prompting further evaluation.
  • In liver elastography, high stiffness values may suggest advanced liver fibrosis or cirrhosis, indicating the need for closer monitoring and potential treatment.

Mixed or Heterogeneous Patterns: Mixed patterns with a combination of blue and red areas can be more challenging to interpret and may require additional tests or clinical correlation. In thyroid elastography, a heterogeneous pattern might indicate a thyroid nodule with variable stiffness, requiring further investigation.

Quantitative Stiffness Values: Elastography provides numerical stiffness values (measured in kPa) for tissue. These values can be compared to established thresholds:

  • Liver elastography values within a specific range may correspond to different fibrosis stages, guiding treatment decisions.
  • In prostate elastography, stiffness values can help identify suspicious regions requiring targeted biopsies.

Serial Monitoring: Elastography can also monitor tissue stiffness changes over time. Improvements or worsening of stiffness can inform treatment effectiveness or disease progression.

Why use Carepatron as your Elastography app?

Carepatron emerges as the top choice for managing elastography tests, offering a robust platform that caters to the unique demands of healthcare professionals in this field. Here are compelling reasons why Carepatron stands out as the preferred Elastography Test app and software:

  • Tailored Elastography Expertise: Carepatron is designed to meet the precise needs of elastography practitioners. Its dedicated features are crafted to handle elastography data efficiently, ensuring accurate patient information management.
  • Seamless Integration: The platform integrates with existing healthcare systems and electronic health records (EHRs). This seamless connection ensures that elastography test results and patient data can be effortlessly merged with a patient's comprehensive medical history, simplifying data management and enhancing the continuum of care.
  • Fortified Security and Compliance: It prioritizes data security and adheres rigorously to healthcare regulations like HIPAA and GDPR. This commitment ensures patient privacy and data protection, making it a trustworthy choice for healthcare institutions that place a premium on safeguarding sensitive information.
  • User-Centric Interface: Carepatron boasts an intuitive and user-friendly interface that minimizes the learning curve for healthcare professionals. This design allows practitioners to focus more on patient care and less on grappling with complex software, ultimately enhancing the overall user experience.
  • Empowering Analytics and Reporting: The platform provides robust data analytics and reporting tools. These capabilities empower healthcare providers to extract valuable insights from elastography results, facilitating data-driven decision-making, research endeavors, and patient care management.
  • Promoting Collaboration: It also facilitates collaborative care by enabling multiple healthcare professionals to access and contribute to patients' elastography records. This feature proves invaluable for multidisciplinary medical teams working together to deliver comprehensive patient care.
  • Flexibility through Customization: The software can be customized to align with the unique workflows and requisites of diverse healthcare institutions and specialties, ensuring a tailored and flexible approach.
Clinical Documentation Software


Who typically requests an Elastography Test?
Who typically requests an Elastography Test?

Commonly asked questions

Who typically requests an Elastography Test?

Elastography tests are typically requested by healthcare providers, including radiologists, hepatologists, oncologists, and other specialists, based on the patient's medical condition and symptoms.

When are Elastography Tests used?

Elastography tests are used when there is a need to assess tissue stiffness or elasticity for diagnostic purposes. They are commonly used for liver fibrosis staging, breast lesion characterization, thyroid nodule evaluation, and more.

How are Elastography Tests used?

Elastography tests involve applying mechanical waves to tissues and imaging the resulting tissue deformation to assess stiffness. Depending on the clinical need, the technique can be performed using ultrasound, MRI, or other imaging modalities.

Join 10,000+ teams using Carepatron to be more productive

One app for all your healthcare work