VO₂ Max Chart

Patient information			
Name:	Age:		
Gender:	Date of birth:		
Height:	Weight:		
Test information			
Use the calculation section on the next page to go use the reference chart values to compare their re	et the patient's VO ₂ max data. To get the rating, esults to normative data.		
VO ₂ max test method:	VO ₂ max:		
Rating:			
□ Superior □ Excellent □ Good □ Fair □ Poor Notes			
Signature:	Date:		

VO, Max Chart

Calculation

Utilize one of the following formulas to get your patient's VO, max.

Note: This is not an exhaustive list of formulas and methods used to estimate a patient's VO₂ max. Various additional approaches and techniques exist. Each method has its own level of accuracy and applicability depending on the resources, population, and context in which it is used.

Fick equation

The Fick equation defines VO₂ as the product of cardiac output (Q) and the difference between arterial and venous oxygen content at the capillary level (a-vO2diff):

$$VO_{2}$$
 max = Q × (CaO2 - CvO2)

Here, VO2 max represents oxygen consumption at maximal exertion, Q denotes cardiac output, CaO2 refers to arterial oxygen content, CvO2 indicates venous oxygen content, and (CaO2 - CvO2) is the arterio-venous oxygen difference.

During incremental exercise to maximal effort, Q increases linearly in a pattern similar to VO2. Some studies suggest that improvements in VO₂ max are primarily attributed to enhancements in Qmax rather than changes in a-VO₂ diff.

Q:	CaO ₂ :
CvO ₂ :	VO ₂ max:

Heart-rate method

The heart-rate method formula provides an estimate of VO₂ max based on the relationship between maximum and resting heart rates. This method is simple and non-invasive, making it accessible for estimating aerobic fitness without the need for direct oxygen consumption measurements. The formula is:

 VO_2 max \approx (HRmax / HRrest) \times 15.3 mL/(kg·minute) Where:

- **HRmax** = Maximum heart rate
- **HRrest** = Resting heart rate
- 15.3 mL/(kg·minute) is a constant used in the calculation.

This formula provides an approximate value for VO₂ max based on heart rate measurements.

HRmax:	HRrest:
VO ₂ max:	

Cooper test

The Cooper Test formula estimates VO₂ max, which is a measure of aerobic fitness, based on the distance covered during a 12-minute run. Here's an explanation of the two formulas:

For distance in matters:

VO₂ max≈44.73d12-504.9

- d12: The distance you covered in 12 minutes, measured in meters.
- **504.9:** A constant that adjusts for baseline oxygen consumption.
- 44.73: A scaling factor that converts the difference into units of mL/(kg·min).

The formula subtracts 504.9 from the measured distance and divides by 44.73 to estimate the VO_2 max.

For distance in miles:

VO₂ max≈(35.97×d12')-11.29

- d12: The distance you covered in 12 minutes, measured in miles.
- 35.97: A constant used to scale the distance into VO₂ max units.
- 11.29: A constant subtracted to adjust for baseline oxygen consumption.

This formula multiplies the distance in miles by 35.97, then subtracts 11.29 to estimate the VO₂ max.

d12:	VO ₂ max:

Rockport fitness walking test

The Rockport formula estimates VO₂ max based on data collected during a one-mile walk performed as fast as possible:

VO₂ max≈132.853-0.0769·BW-0.3877·age-3.2649·t-0.1565·HR+x

- 32.853: A constant representing a baseline VO₂ max value.
- **BW**: Body weight in pounds
- 0.0769: This factor adjusts VO₂ max downward for heavier individuals, as body weight impacts oxygen utilization efficiency.
- Age: Age in years
- 0.3877: Reduces VO max to account for the natural decline in aerobic capacity with age.
- t: Walk time in decimal
- **3.2649:** Penalizes longer completion times, as faster walkers generally have higher aerobic fitness.
- HR: Heart rate in beats per minute
- **0.1565:** Accounts for the relationship between recovery heart rate and fitness; a lower post-exercise heart rate indicates better aerobic fitness.
- x: sex-specific constant (6.3150 for males and 0 for females.) Adjusts VO₂ max upward for males
 due to higher average aerobic capacity compared to females.

BW:	HR:
Age:	X:
t:	VO ₂ max:

VO₂ Max Chart

Reference values

Typical VO ₂ max for males measured in mL/kg/min						
Age	20–29	30–39	40–49	50–59	60–69	70–79
Superior	55.4	54	52.5	48.9	45.7	42.1
Excellent	51.1	48.3	46.4	43.4	39.5	36.7
Good	45.4	44	42.4	39.2	35.5	32.3
Fair	41.7	40.5	38.5	35.6	32.3	29.4
Poor	<41.7	<40.5	<38.5	<35.6	<32.3	<29.4

Typical VO ₂ max for females measured in mL/kg/min						
Age	20–29	30–39	40–49	50–59	60–69	70–79
Superior	49.6	47.4	45.3	41.1	37.8	36.7
Excellent	43.9	42.4	39.7	36.7	33	30.9
Good	39.5	37.8	36.3	33	30	28.1
Fair	36.1	34.4	33	30.1	27.5	25.9
Poor	<36.1	<34.4	<33	<30.1	<27.5	<25.9

References

American College of Sports Medicine. (2020). Fitness categories for maximal aerobic power for men and women by age updated from 2009 to 2013. In ACSM's Health-Related Physical Fitness Assessment Manual, 5th Edition (pp. 151–156).

Cooper, K. H. (1968). A means of assessing maximal oxygen intake. *JAMA*, 203(3), 201. https://doi.org/10.1001/jama.1968.03140030033008

Kline, G. M., Porcari, J. P., Hintermeister, R., Freedson, P. S., Ward, A., McCarron, R. F., Ross, J., & Rippe, J. M. (1987). Estimation of VO2max from a one-mile track walk, gender, age, and body weight. *Medicine and Science in Sports and Exercise*, 19(3), 253–259. https://pubmed.ncbi.nlm.nih.gov/3600239/

Levine, B. D. (2008). VO2 max: what do we know, and what do we still need to know? *The Journal of Physiology*, 586(1), 25–34. https://doi.org/10.1113/jphysiol.2007.147629

Thrush, D. N. (1996). Spirometric versus Fick-derived oxygen consumption: Which method is better? *Critical Care Medicine*, 24(1), 91.

https://journals.lww.com/ccmjournal/abstract/1996/01000/spirometric versus fick derived oxygen.16.a spx

Uth, N., Sorensen, H., Overgaard, K., & Pedersen, P. K. (2003). Estimation of VO₂max from the ratio between HRmax and HRrest? The heart rate ratio method. *European Journal of Applied Physiology*, 91(1), 111–115. https://doi.org/10.1007/s00421-003-0988-y