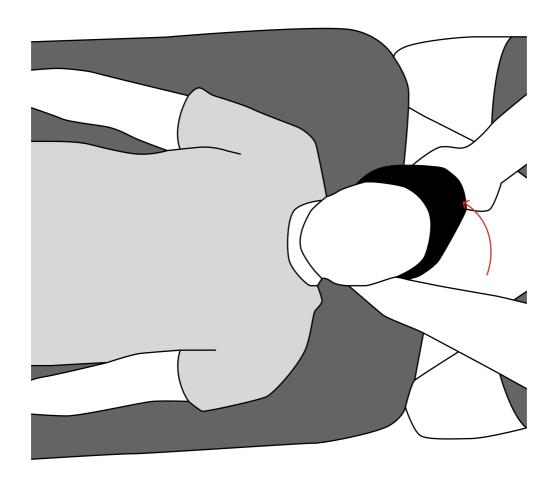

Alar Ligament Test

Patient's name:	Age:	Gender:	
	• •	 	
Examiner:	Date:		

Rotation stress test

- 1. Place the patient in a supine lying position.
- 2. Stabilize the C2 spinous process and lamina using a firm grip.
- 3. Grasp the patient's head with a wide hand span and rotate the occiput, taking the atlas along with it.
- 4. Rotate the head to one side in three planes: neutral, flexion, and extension.
- 5. Ensure no lateral flexion occurs during rotation.
- 6. Assess the range of motion and end feel in all three planes.
- 7. Repeat for the other side.

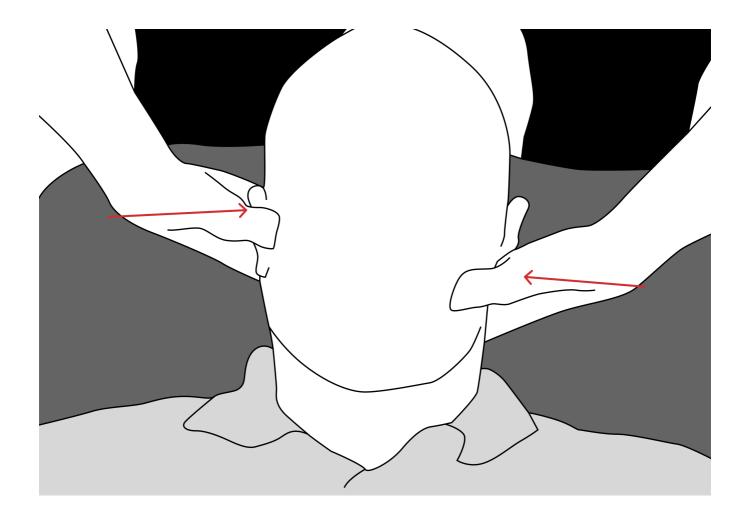
Rotation stress test results and interpretation


Negative : Normal rotation (20-40 degrees with no lateral flexion) without excessive movement
in any plane in both directions, indicating an intact alar ligament.

Excessive bending occurs in only one or two planes: This does not confirm ligament injury, but may indicate other issues such as joint hypermobility or muscle imbalances. This requires further diagnostic tests but is still not a positive test.

☐ Positive: If excessive side bending occurs in all three planes, this suggests alar ligament laxity.

Side-bending stress test (lateral flexion)


- 1. Position the patient sitting or lying supine.
- 2. Stabilize the C2 spinous process and lamina to prevent segmental rotation or side bending.
- 3. Apply slight compression through the crown of the patient's head to facilitate atlanto-occipital side bending.
- 4. Passively bend the patient's head by directing the ear toward the opposite side of the neck.
- 5. Perform side bending in three planes: neutral, flexion, and extension.
- 6. Observe for lateral movement during each test.
- 7. Repeat for the other side.

Side-bending stress test results and interpretation		
■ Negative: No abnormal movement or lateral flexion, indicating an intact alar ligament.		
Excessive side bending occurs in only one or two planes: This does not confirm ligament injury, but may indicate other issues such as joint hypermobility or muscle imbalances. This requires further diagnostic tests but is still not a positive test.		
☐ Positive : If excessive side bending occurs in all three planes, this suggests alar ligament laxity.		

Lateral shear/lateral displacement/lateral gliding test

- 1. Place the patient in a supine position.
- 2. Stand at the patient's head.
- 3. Place on hand on the transverese process of C1 and your other hand on the contralateral transverse process of C2.
- 4. Apply a shearing force by approximating your hands, creating lateral stress on the ligaments.
- 5. Repeat the test with hands switched.

Lateral shear test results and interpretation Negative: No abnormal or excessive movement between C1 and C2, indicating an intact alar ligament. Positive: If excessive movement occurs, this suggests alar ligament laxity or possible injury.

Additional notes

Catalyst University. (2022, January 26). *Alar ligament stress test (with rotation & sidebending)* | *Demonstration & interpretation*. YouTube. https://www.youtube.com/watch?v=KkXnT6LNLhl

Harry Von, P., Maloul, R., Hoffmann, M., Hall, T., Ruch, M. M., & Ballenberger, N. (2019). Diagnostic accuracy and validity of three manual examination tests to identify alar ligament lesions: Results of a blinded case-control study. *The Journal of Manual & Manipulative Therapy, 27(2)*, 83–91. https://doi.org/10.1080/10669817.2018.1539434

Osmotherly, P. G., Rivett, D. A., & Rowe, L. J. (2012). Construct validity of clinical tests for alar ligament integrity: An evaluation using magnetic resonance imaging. *Physical Therapy*, 92(5), 718–725. https://doi.org/10.2522/ptj.20110261

Physiotutors. (2018, April 11). *Alar ligament stress test* | *Upper cervical spine instability*. YouTube. https://www.youtube.com/watch?v=pj-8cAkFYiA

Physiotutors. (2018b, September 26). Lateral shear test / lateral displacement test | Upper cervical spine instability. YouTube. https://www.youtube.com/watch?v=ycsE_MHks_c